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Turcu §

Abstract

This paper investigates the impact of mining on sustainable develop-
ment in Mexico. Specifically, it examines whether mining affects different
dimensions of sustainable development, including consumption patterns,
inequalities, education, and environmental quality. Using household data
on 2,403 municipalities over a period of 30 years considering four waves of
census data (1990, 2000, 2010, 2020), we find that the mining sector has
mixed effects on sustainable development. It has a limited positive effect
on the income of neighboring households but it also generates negative en-
vironmental spillovers. We do not find significant effects on inequalities or
education. Overall, our study provides a more nuanced understanding of
the impact of mining on various aspects of sustainable development, con-
tributing to ongoing debates on the relationship between natural resource
extraction and sustainable development in emerging economies.
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1 Introduction

The 2030 Agenda for Sustainable Development, adopted by all United Nations
Member States in 2015, introduced 17 sustainable development goals (SDGs).1

While these SDGs have played a crucial role in the political agenda so far,
the 2023 SDG Progress report indicates that these objectives are still far from
being accomplished. In fact, some goals have regressed to their 2015 baseline
due to recent events such as the COVID-19 pandemic, the war in Ukraine, and
climate-related disasters (UN General Assembly, 2023).

An urgent need for action is evident, particularly in addressing climate
change. Meeting the climate objectives outlined in the United Nations Climate
Change Conference (COP) Agreement and limiting global warming require a
significant transformation of our economic activities. This transition involves
shifting towards a less energy-intensive economy and embracing a future that is
low-carbon or carbon-free.

Notably, the energy transition will inevitably result in a reduction in the
demand for fossil fuels, impacting the producers of these resources. However, at
the same time, it will also create an unprecedented demand for Energy Tran-
sition Metals (ETM). Recognizing this potential, the World Bank emphasizes
the significant benefits (notably in the form of windfalls) that increased demand
for ETM can bring to developing countries. Latin American economies, in par-
ticular, hold substantial deposits of copper, iron ore, silver, lithium, aluminum,
nickel, manganese, and zinc, making them well-positioned to play a pivotal role
in meeting the emerging demand for ETM (World Bank Group, 2017).

Nevertheless, it is crucial to highlight the potential adverse environmental
impact of the mining sector. The mining industry is widely recognized as one
of the most ecologically impactful sectors (Lei et al., 2016).

As the world strives to meet the SDGs and combat climate change, the
intricate interplay between sustainable development and the energy transition
becomes increasingly evident. Many Latin American countries find themselves
navigating this intricate balance. Economies work to reduce poverty and in-
equalities, and in general to improve the social standards of the population
while trying to address climate change challenges, notably by reducing their
dependency on fossil fuels.

Several Latin American countries have introduced incentives to generate
more investment in the mining sector and diversify their economies.

Mexico is one such country that has made significant efforts to promote

1The UN defines sustainable development as a development process that meets the needs
of the present without compromising the ability of future generations to meet their own needs,
and it puts particular attention to the eradication of poverty and reduction of inequalities.
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its mining sector. During the 1970s, Mexico was severely impacted by the
oil crisis. In response, the government took measures to diversify its economy
offering incentives to boost the manufacturing and mining sectors. An important
step to promote mining was the implementation of the New Mining Law in
1993, which opened up mining, both exploration and exploitation, to foreign
capital. Furthermore, with the entry into force of the North American Free
Trade Agreement (NAFTA) with the United States and Canada in January
1994, the new Foreign Investment Law allowed for greater liberalization of the
mining industry in Mexico (Saade Hazin, 2013).

As a result, Mexico’s economy has experienced significant growth in the
extraction of natural resources, particularly in the mining sector, in recent
decades. However, this growth has also been accompanied by an increase in
socio-environmental conflicts (Tetreault, 2022). Although Mexico’s economy
has not undergone the same level of ”reprimarization” as certain South Ameri-
can countries, it is essential to understand the impact of mining on sustainable
development indicators. To this end, this study aims to investigate the contri-
bution of the mining boom to sustainable development in Mexico.

What sets our study apart is our holistic approach to understanding the com-
plex interplay between mining activities and sustainable development. While
previous research has often focused on isolated dimensions, we comprehensively
analyze three critical aspects: economic performance and inequalities, educa-
tion, and environmental quality. Notably, our research stands out as it pioneers
the use of a staggered difference-in-differences (DID) to address the impact of
the mining industry, specifically metals and minerals, on sustainable develop-
ment. We adopt the estimator proposed by Callaway and Sant’Anna (2020) for
our analysis as the conventional two-way fixed-effect estimation may be biased
(Goodman-Bacon, 2021; de Chaisemartin and D’Haultfoeuille, 2022; Callaway
and Sant’Anna, 2020; Sun and Abraham, 2021). Furthermore, we contribute sig-
nificantly to the limited literature that uses the discoveries of mineral deposits
as exogenous sources of variation, to assess the effects of the mining industry.

For this purpose we construct a unique dataset covering 2403 municipalities
from 1990 to 2020. Our study sheds light on the multifaceted impact of mining
on these dimensions. The findings reveal the potential for mining to boost local
income levels but also highlight the adverse environmental consequences it can
bring. We do not find significant effects on education or economic inequalities.
Through this in-depth exploration of the Mexican case, we contribute to the
global discourse on the effects of the mining sector on sustainable development in
developing countries, providing valuable insights for policymakers, researchers,
and stakeholders who are addressing the challenges posed by the mining industry
in their pursuit of a more sustainable future.

The rest of the paper is divided as follows. Section 2 proposes a literature
review on the topic. Section 3 offers a comprehensive overview of the mining
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sector development in Mexico, and describes the data and methodology used
in the paper. Section 4 presents the results of our analysis. In Section 5, we
discuss the drivers of our results. Finally, Section 6 presents the conclusions.

2 Literature Review

Given the extensive body of literature examining the effects of natural resource
extraction on sustainable development, this paper primarily centers on empirical
studies at the subnational level, as the comprehensive analysis of national-level
empirical results is beyond the scope of our research. The mining industry plays
a crucial role in the economic development of countries by supplying essential
inputs for production. However, it is frequently perceived as one of the sec-
tors with the most significant effects on both society and the environment. As
a result, the industry actively engages in discussions on sustainable develop-
ment. While mining companies acknowledge their role in contributing to the
energy transition and sustainable development, they often overlook the negative
impacts associated with the extraction process (Frederiksen and Banks, 2022).

Taking into account the SDG as a map to measure the possible contribu-
tions of the mining sector, Merino-Saum et al. (2018) highlight that minerals are
directly involved in achieving affordable and clean energy (SDG7), responsible
consumption and production (SDG 12) and climate action (SDG 13). Addition-
ally, mining companies can make direct or indirect contributions to reducing
poverty (SDG 1), improving health (SDG 3), enhancing education (SDG 4),
empowering women (SDG 5), and reducing inequalities (SDG 10) (Frederiksen
and Banks, 2022; Hilson and Maconachie, 2019). However, it is crucial to note
that the mining sector is also known for its negative environmental impacts,
potentially affecting land (SDG 14) and bodies of water (SDG 6 and 15) among
others.

The intrinsic relationship between sustainable development and the exploita-
tion of natural resources has been extensively explored in the literature. One
prevailing concept often discussed is the resource curse, which suggests that
countries heavily reliant on natural resources tend to experience negative de-
velopment outcomes. As a consequence, much of the literature has focused
on examining the positive or negative effects of resource extraction and over-
dependency on natural resources on various dimensions of sustainable develop-
ment.

The literature developed at national level gives mixed results, and is not yet
settled (Badeeb et al., 2017; Rosser, 2006). It does however suggest that the
quality of institutions may shape the effect of natural resources in the economy.
That is, once the quality of institutions is taken into account natural resources do
not represent a curse (Aragon et al., 2015; Epo and Nochi Faha, 2019; Mehlum
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et al., 2006; Sala-i Martin and Subramanian, 2013).

There is growing literature analyzing the effects of the extraction of non-
renewable natural resources at the sub-national level. Aragón and Rud (2013)
is one of the earliest and key studies to investigate the effect of a mine on
consumption in neighboring communities. They find that gold mining increases
the level of consumption of the population in the neighboring area.

Similar setups have been used to analyze the effect of natural resource ex-
traction around the globe in different aspects of sustainable development. In
the case of Africa, positive effects are generally found in consumption Bazillier
and Girard (2020), urbanization (Mamo et al., 2019) or other (Axbard et al.,
2021; Benshaul-Tolonen, 2018). Negative spillover effects are found in agricul-
tural productivity (Aragón and Rud, 2015), health (von der Goltz and Barnwal,
2018), inequalities (Aragon et al., 2015) and increase in corruption (Knutsen
et al., 2016).

In the case of LAC, the literature also shows mixed results. For instance,
gold mining in Peru has positive spillover effects on consumption in the vicinity
of the mine (Aragón and Rud, 2013). Nevertheless, the oil activity in Brazil
does not show a significant effect on consumption (Caselli and Michaels, 2013).
Further Rau et al. (2015) find that waste from a mining site in Chile lead to
a decrease in academic performance due to lead concentration in the blood of
people in the neighboring area.

Regarding the Mexican case, the literature related to the effects of the min-
ing sector highlights, the negative effects on the vicinity of the mines in Aguas-
calientes (Mitchell et al., 2016), Zacatecas (SalasMuñoz et al., 2022) and San
Luis Potośı (Monzalvo-Santos et al., 2016). The empirical studies are conducted
by sampling and analyzing the composition of the flora and fauna affected. As
a result, the studies only focus on specific locations.

On a more general note Tetreault (2022) shows that the mining sector has
been increasing since the liberation of the sector. However, the increase has
been accompanied by a spike in socio-environmental conflicts with neighboring
communities.

In conclusion, the literature related to the extraction of natural resources at
the sub-national level is growing and gives mixed results. Most of the authors
focus on particular aspects of sustainable development, revealing both positive
and negative spillover effects. However, research on this topic remains limited,
particularly in the context of LAC, and even more so in the case of Mexico.
Therefore, our objective is to contribute to the existing literature by offering a
comprehensive examination of the effect on the sustainable development of the
mining sector in Mexico.
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3 Data and Specification

3.1 Mexican Case

Mexico recognizes the importance of fostering the mining sector and has actively
promoted its growth. This is not surprising considering the long mining tradition
of the country. The mining sector has been part of the Mexican economy since
pre-Hispanic civilizations.

Currently, Mexico holds a prominent position as the leading producer of
silver worldwide and has considerable deposits of other minerals and metals,
including gold, copper, and zinc (Figure A1). The mining sector in Mexico
contributes significantly to the industrial GDP, accounting for 8.6% of its to-
tal. Mexico’s vast territory encompasses an abundance of geological riches, with
nearly 70% of the land exhibiting favorable geology for mining operations (Sec-
retaŕıa de Economı́a de Mexico, 2022).

The sector’s notable growth can be partly attributed to the efforts of the
government to promote it, which began with the New Mining Law in 1993.
This landmark legislation facilitated the entry of foreign capital into the mining
sector, enabling both exploration and exploitation to thrive. The mining situ-
ation in the country mirrors that of its counterparts in Latin America and the
Caribbean (LAC), with the state owning the minerals and the mining companies
having to pay fees for exploration and resource extraction.

Following the implementation of the Mining Law, the government opted not
to introduce a royalties system for the mining sector. Instead, payments for
extraction rights were based on the size of the extraction site. However, due to
the sector’s growth and the rising commodity prices during the 2000s, the Mex-
ican government decided to introduce additional taxes resembling a royalties
scheme. The generated revenues from these taxes are partially allocated to a
fund dedicated to mining municipalities involved in the extraction, transporta-
tion, and processing of the materials (Morones, 2016). This move aligns the
country’s system with the widely used royalty scheme (International Monetary
Fund, 2012). This fiscal mechanism is also used in other Latin American and
Caribbean (LAC) countries such as Brazil, Colombia, and Peru, among others.

Further, the modifications of the mining law in 2022, declared lithium a min-
eral of national interest, consequently ”The exploration, exploitation, benefit,
and use of lithium are exclusively in charge of the State”. 2 Hence making evi-
dent the interest of the country in active participation in the energy transition.

2Text translated by the authors from Spanish. The original text says ”La exploración,
explotación, beneficio y aprovechamiento del litio quedan exclusivamente a cargo del Estado...”
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3.2 Data

3.2.1 Sustainable development measures

To assess the impact of the mining sector on sustainable development in Mexico,
we focus on income, inequalities, education, and environmental damages. The
mining sector accounts for 8.6% of Mexico’s industrial GDP; therefore, we can
anticipate that it contributes to the economic development of the municipalities
where mines are located. Additionally, our analysis delves into the intricate re-
lationship between mining and income inequalities, as these activities can either
alleviate poverty or exacerbate disparities within local communities. We also
explore the potential effects of the sector on education, considering both possi-
ble improvements in access to education and potential detrimental effects. It is
worth noting that empirical evidence at the national level suggests that natu-
ral resource abundance can be negatively correlated with education (Gylfason,
2001; Ross, 2001; Sachs and Warner, 2001). Furthermore, considering that the
mining sector is often viewed for its substantial environmental impact; our re-
search addresses the environmental sustainability aspects of mining, offering an
examination of land degradation (proxied by NDVI as a measure of vegetation
health) as well as water and air pollution.

We construct a novel dataset for Mexico covering 2,403 municipalities con-
sidering information on key sustainable development indicators and the mining
sector.

Our main data source for the characteristics of Mexican municipalities is
the extended survey of the census. The main differences between the basic
questionnaire and the extended version lie in their coverage and the number of
questions they contain. We rely on the extended survey as it has information
on the municipality of the households, their characteristics, and their income
(other standardized surveys conducted in Mexico as the household survey do
not specify the location at the municipality level). We consider data from four
rounds of the Census covering 1990-2020.

We employ the information of the households and individuals for different
variables of interest and the control variables. For household income, we use
the question ”Monthly income from work in the household” or equivalent. In
total, our dataset has information on 10,931,947 households. Figure 1 maps
the average income of municipalities for 2020 as a reference year. We observe
that municipalities with higher levels of income are mostly located in the north
of the country as well as the near area of the capital, highlighting the well
documented disparities between the northern and southern regions (Sánchez-
Reaza and Rodŕıguez-Pose, 2002; Trejo Nieto, 2020).

We use household income to construct two measures of income inequalities,
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namely the Gini and Theil index. 3 Figure A2 maps the Gini at the munici-
pality level. We drop municipalities that present missing values in any of the
four rounds of the census used. As a result, our dataset finally covers 2,403
municipalities. Income inequalities show an overall decrease (Figure A3). Using
the information on the education status of individuals in the survey, we build
a measure of the secondary schooling rate and average years of schooling. Over
time there has been a noticeable improvement in education indicators (Figure
A4).

Figure 1: Income Distribution

To assess the environmental impact we use high-definition satellite data from
NASA to construct a normalized difference vegetation index (NDVI) at the mu-
nicipality level. The NDVI is a commonly used remote sensing index that indi-
cates the amount and vigor of vegetation in an area by analyzing the difference
in reflectance between near-infrared and red light. It is computed as:

NDV I =
NIR−RED

NIR+RED
(1)

Where NIR and RED are the amounts of near-infrared and red light, respec-
tively, reflected by the vegetation and captured by the sensor of the satellite.
The formula is based on the fact that chlorophyll absorbs RED whereas the

3We use the INEQDECO package in Stata for the construction of the Gini and Theil indices
based on income data from the census

8



mesophyll leaf structure scatters NIR. NDVI values thus range from -1 to +1,
where negative values correspond to an absence of vegetation (Pettorelli et al.,
2005).

The literature highlight the potential and documented negative effects of
the mining sector. In the case of Mexico, Several studies have demonstrated
a correlation between the mining industry and land degradation resulting from
exposure to metal contamination (Mitchell et al., 2016; SalasMuñoz et al., 2022;
Monzalvo-Santos et al., 2016). We hypothesize that this land degradation will
adversely affect the local flora, leading to a reduction in the quality and quantity
of vegetation, which, in turn, would be reflected in decreased NDVI values.

The NDVI is high-frequency data. To harmonize our model we aggregate
the data at the municipality-year level. For this reason, we use yearly data from
2000-2020 in our model (in that regard, the frequency of the environmental data
is different than other sustainable development outcomes). Figure A5 shows the
distribution of the NDVI in Mexico for 2020. As expected high values of the
index are located in the south of the country. Further, in the sample, we observe
that there is an overall decrease in the mean NDVI in the country with a slight
recovery at the end of the studied period.

For robustness purposes we also check whether the environmental impact
of the mining sector, affects bodies of water and reflects in air contamination.
We use data from the Comisión Nacional del Agua (2023), which provides in-
formation on water quality from 2012 to present for selected bodies of water
(superficial water, as in rivers, and lakes). In the case of air quality we rely on
ODIAC dataset which is a high-spatial resolution global emission data prod-
uct of CO2 emissions from fossil fuel combustion (Oda and Maksyutov, 2015).
Similarly with the case of NDVI data, we aggregate the CO2 emissions data at
municipality level for the period 2000-2020.

3.2.2 Mining variables

We combine the information from the census with data on mining, taken from
Minex. The database provides information about medium-size or larger known
mineral commodities, their characteristics, and the geographical location of
mines with a global scope. In the case of Mexico, the dataset covers 193 obser-
vations. Figure 2 shows the location of the different activities in the territory.
The data shows that 33% of the mines are operating, 25% are in exploration,
16% in feasibility and the rest present another status. Furthermore, most of the
mining activity is concentrated in northern and central areas of the country.

In this study, we employ data on both the start of mining operations and
the discovery of mineral deposits. Our approach is based on the observation
that there was a significant surge in the number of mining discoveries and the
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establishment of new mines after the early 1990s as shown in Figure A6. This
growth of the sector corresponds to the liberalization of the mining industry,
which occurred after the new mining law and the North American Free Trade
Agreement (NAFTA) was implemented. The goal of these policy changes was
to encourage foreign investment in the mining sector.

When considering the composition of the materials being extracted, we ob-
serve that a large proportion of the mining activities in our sample pertain to
precious metals. Approximately 77% of the mining operations in our study in-
volve gold or silver as the primary metal in the deposit. Copper ranks as the
third most common metal, accounting for 12% of the sample, followed by Zinc
at 4%. Other minerals present in the deposits included in our analysis comprise
graphite, iron, lithium, and several others.

Figure 2: Mines location

3.2.3 Control variables

We use census data to control for the demographic characteristics of the popu-
lation. In particular, we use information on age, sex, indigenous language, and
accumulated education of the head of the family as controls. Further, we rely on
information from INEGI and geocoded data to construct geographical controls.
At the municipality level, we use a percentage of agricultural land, a dummy
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if the municipality has a coastline if it is the capital of the state, distance to
capitals, and to DF.

3.3 Methodology

To evaluate the impact of the mining sector on sustainable development, we
start by testing whether municipalities with active mines (the treated group)
exhibit higher or lower levels of key development factors compared to non-mining
municipalities. To achieve this, we adopt a staggered difference-in-differences
(DID) model:

Yit = βDit + λXit + αi + αt + eit (2)

where Yit represents the outcomes of interest. We use income to asses eco-
nomic development; years of schooling and percentage of secondary enrollment
for education; Gini index and Theil index for economic inequalities; and we
use NDVI for environmental damages. Dit is a binary variable equal to 1 if
there is a mine operating since year τ ≤ t. Xit is a vector of time-varying
socio-demographic characteristics used as controls in the model. Finally αi, αt

represent municipality and year fixed effects respectively. eit is the error term.

We define the treatment and control group based on the characteristics of
the mining sector. The treatment is composed of those municipalities that
present an operating mine (Dit = 1). The control group is composed of those
municipalities that do not have one. As a robustness check, we also test whether
the discovery of a deposit has an impact on development. To do this, we generate
a binary variable equal to 1 if there is a discovery in a given municipality.

Given the nature of the mining sector, our approach differs from the con-
ventional difference-in-differences (DID) methodology as we have multiple time
periods to consider. As shown in Figure A6, the start of mine operations in
Mexico is staggered, and we assume that once a municipality begins mining
operations, it does not change this status. However, as the implicit assump-
tion of a constant treatment effect over time is unlikely to hold in our case, the
standard two-way fixed-effect estimation may be biased (Goodman-Bacon, 2021;
de Chaisemartin and D’Haultfoeuille, 2022; Callaway and Sant’Anna, 2020; Sun
and Abraham, 2021). To address this issue, we adopt the estimator proposed
by Callaway and Sant’Anna (2020) for our analysis. In the sample, 54 munic-
ipalities experienced the discovery of a new deposit during the study period
(1990-2020). Additionally, 40 municipalities started mining sector operations
for the first time within the same period.

We use this estimator to compute the average treatment on the treated
(ATT) using various approaches. Specifically, we take advantage of group-
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specific ATT and event study methodologies to analyze our results. The former
enables us to examine the impact of mining on different groups of municipalities
based on the year of treatment. In other words, we assess the average treatment
effect for municipalities that entered the treatment group in year t. The latter
approach involves running Equation (3) to explore the dynamic effects of the
treatment. This allows us to observe the treatment’s impact and its evolution
until time t = L, while also accounting for the anticipation of municipalities
receiving the treatment.

yit =

−1∑
e=−K

βanticip
e De

it +

L∑
e=0

βeD
e
it + γXit + αt + αi + vit (3)

Note that there are three versions of equations (2) and (3), depending on
the outcome of interest. For inequalities, education, and consumption, the time
dimension covers the period of 1990-2020 using four points (1990, 2000, 2010,
and 2020). For consumption, we use data at the household level instead of
the municipality level. The treatment criteria are chosen at the municipality
level, that is, treated households are those in a municipality where there is
an operating mine. For NDVI, due to the type of information, we use yearly
data over the period 2000-2020 and we only include geographical controls. Our
approach to assessing the environmental impact of the mining sector differs from
existing literature in a significant way. Unlike methods that directly measure
water or soil quality (Mitchell et al., 2016; SalasMuñoz et al., 2022; Monzalvo-
Santos et al., 2016), our methodology does not allow for a detailed assessment
of contamination from sampling. However, it does enable us to consider larger
geographical areas in our study.

4 Main Results

4.1 Baseline

Table 1 presents a summary of our main findings, with detailed result tables
available in the appendix. We observe that the start of a mine in a municipality
increase the level of income of households. Additionally, we observe a reduction
in the NDVI, indicating a decline in vegetation quality. For the analysis of
household consumption, we used a repeated cross-sectional regression approach
from the Callaway and Sant’Anna (2020) estimator to take advantage of a more
comprehensive dataset. Figure A7 presents the event study set-up for the effect
of mining on household income. Detailed results are displayed in Table A1. Our
results reveal a significant impact of the mining sector on household income. The
average treatment effect is positive and statistically significant, and it continues

12



to remain positive even after the initial period of treatment. We also observe
a positive effect one period before the start of the mine (t − 1); however, the
average effect prior to the start of the mine is negative. This result can be
explained by the various activities that surround the mining sector before the
start of mining operations, such as the feasibility and construction of the mine
site. Furthermore, due to data constraints we are unable to measure growth
rates of household income. Consequently, we interpret our findings as indication
a one-time increase in the level of income of those households located in the
municipality where a mine starts operation. This increase happens even before
the start of the mine.

Table 1: Dynamic effects of mining

Consumption Environment (NDVI)

Event - Study

Average -0.116*** Average 78.84***
(t < 0) (0.0228) (t < 0) (20.51)

Average 0.137*** Average -377.3**
(t ≥ 0) (0.0259) (t ≥ 0) (181.9)

Group Specific Effect

G. Average 0.124*** G. Average -59.96***
(0.0134) (22.69)

N 8300793 N 51282

Note: the table shows staggered DID estimations. The de-
pendent variable for consumption is logarithm of income of the
households and in the case of environment the NDVI at munic-
ipality level. Average treatment effect on the treated (ATT)
of start of a mine for each specification. Event study results
show the overall ATT across all groups overtime, while the
group-specific results average the ATT of each group. (t < 0)
Represent average anticipation of the treatment and (t ≥ 0)
and G. Average are the ATT of start of the mine depending
of the specification. . WildBootstrap (WB) standard errors in
parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01

The second part of table 1 shows the main findings of the results for environ-
mental impacts using the NDVI. We observe the average effect of mining over
the studied period (2000-2022). The results indicate that the mining sector has
a significant environmental impact, as expected. The negative effects reflect a
reduction of the NDVI, hence, a reduction in the health of the vegetation in the
municipality. Table A2 presents short-listed results for the NDVI estimation,
Table O1 in online appendix presented detailed results.The event study suggests
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that the effect of the opening of a mine is not significant in the years following
the event but over the years it becomes visible and is captured by the health of
the vegetation as displayed in Figure A8. We interpret this lag in the impact
as the time it takes for the sector to have significant negative environmental
impacts that are observed with satellite imagery. Moreover, we observe that
on average the post-treatment effect is negative and significant along different
aggregation methods allowed by the Callaway and Sant’Anna (2020) estimator.
In this regard, our results are in line with the literature that highlights the
negative environmental spillovers of the sector.

Table A3 for the rest of the outcomes. We observe that the start of mine does
not significantly impact neither education, measured by secondary enrollment
rate or average years of education, nor the distribution of income. We do not
find any significance for the average effect post-treatment, neither the effect in
ten nor 20 years is significant. We observe a modest reduction of the inequalities
before the start of the mine measured by the Gini. However, the result is not
fully consistent with the Theil index. In the case of the Theil index, the pre-
treatment indicates a reduction of inequalities as the Gini. Nevertheless, the
effect after 10 years of the start of the mine indicates an increase in inequalities,
this effect of the start of the mine is not observed using the Gini. Consequently,
we conclude that the effect of the mining sector on inequalities is not robust.

The baseline results suggest a dual effect of the start of operation of a mine
in a municipality: on one hand, there is an increase in the income levels of
households. However, this increase is accompanied by an increase in environ-
mental contamination, as evidenced by the reduction of the NDVI. We highlight
that the effect on income is perceived earlier than the environmental damage,
according to the results. Furthermore, the extractive sector does not appear to
have a significant influence on education or economic inequalities within the host
municipalities. Therefore, in the following section, we will focus on the robust-
ness of the impact of the mining sector on household income and environmental
damage.

4.2 Robustness Checks

To ensure the robustness of our findings, we employ several approaches. Firstly,
we modify the treatment and control group by selecting municipalities in closer
proximity to the mining sites. Secondly, we account for the possibility that
changes in the surrounding areas may occur before the actual start of mining
activities due to differences in time between the discovery of deposits and the
start of mining. To do this, we re-estimate our baseline equation using the
year of discovery as the treatment. Finally, we adopt an alternative estimation
method to test the validity of our results.

To ensure the robustness of our findings regarding the effects on income and
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the environment, we conducted additional tests. Firstly, we examined whether
the impact of mining sites spills over to neighboring municipalities. To do this,
we created buffers around the mine sites and included municipalities located
within these buffers as part of the treated group. We tested different buffer
sizes ranging from 5km to 75km from the mines.

In the case of consumption, we found that the results remained consistent
and qualitatively similar with the selected buffers (See Table A4, Figure A9).
However, the magnitude of the results decreased beyond 10 kilometers. Addi-
tionally, while the average effect on the treated is positive, group-specific coef-
ficients are less significant (and even negative in the 75km buffer).

The event study analysis revealed that there was an increase in income levels
even before the start of the mine, and this level remained relatively stable in the
periods following the mine’s start for the closest municipalities (within 5km).
However, for farther buffer distances, the income boost observed initially decays
over time as shown in figure A11a.

We interpret these results as evidence of the enclave nature of the mining
sector. The initial income boost may be attributed to the construction phase
of the mine, but once the mine is operational, we observe a slight decline in
income levels.

These findings support the idea that the mining sector has only local ef-
fects on income, and these effects tend to diminish as distance from the mine
increases.

The extensive literature on the environmental effects of mining consistently
highlights the negative impacts on nearby areas. Indeed, our findings suggest a
similar picture. We observe that the significance of the effects diminishes beyond
a distance of 25km, and the results are no longer robust out with a 10 km buffer
(Figure A10). Table A5 presents the average effects for different distances,
revealing that in the event study setup, the average effect after the start of
the mine is significant at 5km, 10km, and 25km. However, when examining
group-specific average effects, we find that only the treatment at 5 km and 10
km distances is statistically significant. These results partially align with the
literature, which emphasizes the enclave nature of the environmental impacts,
suggesting that the effects are more concentrated in closer proximity to the
mining sites.

Our findings on consumption patterns suggest that changes in income dy-
namics start to occur even before the actual start of mining operations. This
observation can be attributed to preliminary phases such as exploration, fea-
sibility studies, and construction, which require investments that can impact
household incomes. Additionally, once a mineral deposit is discovered in a
municipality, expectations and anticipation may start to build up, potentially
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influencing income levels or the environment for that matter.

To address this issue, we modify our approach by using the year of dis-
covery instead of the year of the mine’s start to define the treatment group.
This adjustment allows us to capture the effects of the different mining phases
and their potential influence on income dynamics, providing a more accurate
representation of the treatment effect. By using this approach we add to the
literature that uses the discovery of deposits as exogenous sources of variation
(Brunnschweiler and Poelhekke, 2021; Cavalcanti et al., 2019; Cotet and Tsui,
2013; Smith, 2015).

We first test whether we find similar results using as a treated group all the
municipalities that have a discovery in our sample, this method differs from the
baseline as the treated group is bigger due to those locations in which there has
been a discovery but a mine is not operating yet. As a result, we do not expect
to have the same results with this methodology as the treated group may include
municipalities with stalled projects or in feasibility that do not necessarily have
a significant impact on the municipality. In the second step, we slice the treated
group so that it only includes municipalities with operating mines.

The results obtained for consumption levels show weak effects in our anal-
ysis. We observe an increase in consumption levels in the period immediately
following the discovery of a mineral deposit. However, the average effect over
the post-discovery period is not statistically significant. When examining the
group-specific setup, we find mixed results as well. While the average effect
is positive, two specific groups (2000 and 2020) exhibit a negative effect on
consumption levels. These findings remain consistent even when we exclude
municipalities with deposit discoveries that are not currently operating.

We interpret the results as evidence of the limited capacity of the mining
sector to permanently increase household wealth through consumption. Despite
an initial boost in consumption levels following a deposit discovery, the effects
are not sustained over time. This suggests that the mining sector may have
limitations in its ability to generate long-term prosperity for households in terms
of consumption patterns.

In the case of NDVI we find similar results as the baseline (see Figure A11),
the average effect is negative in both set-ups. Further, we observe negative
effects sooner compared with using the start of the mine as a source of variation
(from two years after the discovery). The results are largely unchanged when
we omit those municipalities without operating mines.

In addition to our baseline estimator, we also employ an alternative estima-
tion method for Equation (3). Specifically, we utilize the estimator proposed
by de Chaisemartin and D’Haultfoeuille (2022). Unlike the approach presented
by Callaway and Sant’Anna (2020), this estimator does not allow for group or
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cohort-specific Average Treatment Effects (ATT).

The results obtained using this alternative estimator exhibit a similar pattern
to our baseline findings. However, the significance levels differ as shown in
Table O3 and Figure A12. Specifically, in the case of consumption, we observe
a significant effect only in the year of the start of the mine. On the other hand,
for the Normalized Difference Vegetation Index (NDVI), we observe a significant
effect only after t+13.

Lastly, we validate the results related to environmental damage by employing
alternatives measures, specifically we test for contamination in bodies of water
and air contamination. For the former, we utilize data from Comisión Nacional
del Agua (2023), which provides information on water quality from 2012 to the
present for selected bodies of water (superficial water, as in rivers, and lakes).

We conduct tests to determine if the start of a mine increases the presence
of heavy metals in the water. 4 For this analysis, we define the treatment group
as those observations (rivers, lakes, etc.) located within a 10-kilometer radius
from a mine. The results indicate that mining does indeed lead to an increase
in the levels of arsenic, mercury, and potentially chromium in the water.

Table A9 displays the results, and we observe that the average effect is
both significant and positive in the event study setup. However, in the case of
chromium, the group-specific setup no longer yields a positive effect. These find-
ings provide additional evidence for the concerns regarding the environmental
impact of mining activities.

We use data from ODIAC dataset, a high-spatial resolution global emission
data product that tracks CO2 emissions from fossil fuel combustion (Oda and
Maksyutov, 2015). Similar to our approach with the NDVI data, we aggregated
the CO2 emissions data at the municipal level for the period from 2000 to
2020, and the results are presented in Table A10. Our analysis reveals that the
average effect is not statistically significant, neither post the start of mining
activities nor in the group specification. However, we do find weak evidence
of an increase in CO2 emissions; notably, the dynamic effect in the year of the
start of mining is significant as well as other specific years. Furthermore, in the
group specification, six cohorts show an increase in emissions, while only two
exhibit a reduction.

In summary, the different proxies we employed provide evidence of the min-
ing sector’s adverse impact on the environment. In line with previous studies,
our results suggest that the sector contributes to land degradation, as reflected
in the reduced health of vegetation. Furthermore, we also observe evidence of
heavy metals in bodies of water, but we do not find strong evidence of increased

4We test for the presence or increase of arsenic, cadmium, chromium, mercury, nickel, lead,
cyanide, copper, and zinc.
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pollution at the municipal level, although such effect cannot be ruled out.

5 Discussion

In the previous section, we showed that the mining sector had a significant effect
on household income, while also resulting in negative environmental spillovers.
In this section, we aim to analyze whether these effects are driven by specific
types of mines, such as those involved in the extraction of precious metals,
bulk commodities, particularly energy transition metals, or mining sites of a
particular size. Additionally, we conduct further tests to examine whether the
income shock resulting from mining activities affects different quantiles of the
population.

We initially investigate whether the size of a mine influences the impact of the
mining sector on a municipality. Our dataset categorizes mines into three sizes:
medium, major, and giant deposits. To examine this, we modify the treatment
group in our baseline analysis, including only municipalities with specific mine
sizes, while excluding other mining municipalities from the sample.

Table A11 presents the ATT based on the characteristics of the mine. In
terms of consumption, the results indicate that the effects are primarily driven
by giant and major mining sites. Interestingly, we observe a slightly larger
effect for giant operations. In municipalities where the mining sector starts
with moderate-sized operations, the effect of the mine’s start on income is not
statistically significant. Additionally, major-sized mines tend to have negative
spill-over effects on the environment of the host municipalities.

Furthermore, the behavior of the mining sector is primarily influenced by
the extraction of precious metals. This finding aligns with our expectations,
considering that nearly 80% of the sample consists of mines where the primary
metals extracted are gold or silver. Consequently, we do not find any significant
effects of Energy Transition Metals (excluding silver) on household income. The
negative environmental effect do not seem to be exclusive to a particular type of
commodity, although the effect in our sample is not robust among specifications.
5

To analyze the distributional effects of the mining boom on households
within the municipalities, we divide our sample into quantiles and estimate
the outcomes for each cohort. Table A12 presents the results. The findings
indicate that the lowest quantile, as well as the 3rd and 4th quantiles, benefit
from the mining sector. Interestingly, although the lowest quantile experiences

5The results of precious metals present qualitatively the same behavior of the baseline,
although, in the case of event study specification, the average post treatment effect is not
significant
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the largest effect, this impact is not persistent over time in the dynamic setting.
On the other hand, higher quantiles continue to experience positive effects from
the mining boom.

The results suggest that the discovery and further extraction of natural
resources do not necessarily guarantee an increase in household consumption in
the neighboring areas. Rather, the implications are similar to opening Pandora’s
box, as positive spillovers on consumption if there are any, may be accompanied
by negative environmental effects. This interaction explains the increase of
unrest and conflicts in communities with mining projects. As the positive and
negative effects of the mining sector will largely depend on the characteristics
of the mine.

6 Conclusion

In this study, we have analyzed the role of the mining sector in the sustainable
development of Mexican municipalities. For this purpose, we use a novel dataset
constructed with Satellite data, Mining information, and the Mexican Census.
We exploit the variability that occurred in the country due to the introduction
of the new mining law and the NAFTA that liberalized the mining sector. Con-
sequently, we analyze whether the start of a mine in a municipality improves or
deteriorates sustainable development.

Our findings reveal that the discovery and start of mining activities con-
tribute to an increase in the income levels of municipalities. However, the
persistence of this effect over time varies depending on the characteristics of
the mine. Furthermore, it is important to note that the benefits are not evenly
distributed among households within the municipalities. Additionally, some
spillover effects can be observed in neighboring areas, albeit to a lesser extent.

Simultaneously, the mining sector has negative environmental spillovers, par-
ticularly in the host municipality. However, these effects may not be immedi-
ately evident in the short term. Our analysis does not uncover significant effects
on education or monetary inequalities. It is the combination of these outcomes
that helps explain the rise in conflicts between communities and mining projects.

Overall, our study sheds light on the complex dynamics of the mining sec-
tor, highlighting both the economic benefits and environmental challenges as-
sociated with it. The unequal distribution of benefits and potential negative
consequences contribute to the increased unrest observed between communities
and mining projects.

The energy transition required to mitigate climate change is intensive in the
use of minerals and metals. Consequently, an increase in extraction within the
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mining sector is expected to meet the demand for addressing climate change.
Hence, mitigation policies aimed at achieving carbon neutrality may function
as a double-edged sword. On one hand, they reduce carbon emissions, but
on the other, there are mixed effects on sustainable development for mining
communities, with increases of levels of income accompanied by an increase in
environmental damage due to material extraction.
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7 Appendix

Figure A1: Global supply participation

Figure A2: Gini Index
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Figure A3: Evolution of inequalities indicators

(a) Gini index (b) Theil index

Figure A4: Evolution of education indicators

(a) Secondary enrollment rate (b) Average years of schooling
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Figure A5: NDVI Maps

Figure A6: Evolution of the mining sector

(a) Year of Start of mines (b) Year of Discovery of Deposit
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Figure A7: Effect of mining on Income

Event Study based on Callaway and Sant’Anna (2020) estimator. The treatment is defined by
the start of the operation of a mine in the municipality. We use WB for the standard errors.
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Figure A8: Effect of mining on Environment (NDVI)

Event Study based on Callaway and Sant’Anna (2020) estimator. The treatment is defined
by the start of operation of a mine in the municipality. We use WB for the standard errors.
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Figure A9: Robustness test: Effect of mining on Income

Event Study based on Callaway and Sant’Anna (2020) estimator. The treatment is defined
by the start of operation of a mine, the treated municipalities are chosen based on distance
from the mine. We use WB for the standard errors.
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Figure A10: Robustness test: Effect of mining on Environment (NDVI)

Event Study based on Callaway and Sant’Anna (2020) estimator. The treatment is defined
by the start of operation of a mine, the treated municipalities are chosen based on distance
from the mine. We use WB for the standard errors.

Figure A11: Robustness test: Discovery year

(a) Effect on Income (b) Effect on Environment (NDVI)

Event Study based on Callaway and Sant’Anna (2020) estimator. The treatment is defined
by the year of discovery of the deposit. We use WB for the standard errors.
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Figure A12: Robustness test: Alternative estimator

(a) Effect on Income (b) Effect on Environment (NDVI)

Event Study based on de Chaisemartin and D’Haultfoeuille (2022) estimator. The treatment
is defined by the year of the start of the operation of the mine. We use WB for the standard
errors.
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Table A1: Dynamic effects of mining on consumption

(Event Study) (Group-Specific Effect)

Average -0.116*** G. Average 0.124***
(t < 0) (0.0228) (0.0134)

Average 0.137*** g = 2000 0.0987**
(t ≥ 0) (0.0259) (0.0465)

t = −20 -0.380*** g = 2010 0.117***
(0.0432) (0.0177)

t = −10 0.149*** g = 2020 0.159***
(0.0188) (0.0154)

t = 0 0.0503***
(0.0123)

t = 10 0.160***
(0.0179)

t = 20 0.200***
(0.0582)

N 8300793 N 8300793

Note: the table shows staggered DID estimations. The de-
pendent variable for consumption is logarithm of income
of the households. Average treatment effect on the treated
(ATT) of start of a mine for each specification. Event
study results show the overall ATT across all groups over-
time, while the group-specific results average the ATT of
each group. (t < 0) Represent average anticipation of the
treatment and (t ≥ 0) and G. Average are the ATT of start
of the mine depending of the specification. (t = n) repre-
sents the ATT of n years since/before the event (being 0
the year of the start of the mine).g = k represents the ATT
across time of the group of municipalities that received the
treatment in the year k. * p < 0.10, ** p < 0.05, ***
p < 0.01. WildBootstrap (WB) standard errors in paren-
theses.
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Table A2: Dynamic effects of mining on NDVI

(Event Study) (Group-Specific Effect)

Average 78.84*** G. Average -59.96***
(t < 0) (20.51) (22.69)

Average -377.3** g =2002 -2092.9***
(t ≥ 0) (181.9) (26.74)

t = 0 -30.45 g =2005 384.9***
(97.02) (5.548)

t =8 -227.3* g = 2009 -261.2***
(125.1) (19.36)

t =13 -341.4* g = 2011 -49.15***
(187.8) (13.35)

t =16 -901.0*** g = 2014 169.9***
(32.09) (11.50)

t =17 -2086.4*** g = 2019 -193.7***
(28.65) (6.330)

t =18 -1612.2*** g = 2020 181.4***
(29.89) (6.477)

N 51282 N 51282

Note: the table shows staggered DID estimations. Com-
plete table of results available in online appendix. The de-
pendent variable for environment is the NDVI at municipal-
ity level. Average treatment effect on the treated (ATT) of
start of a mine for each specification. Event study results
show the overall ATT across all groups overtime, while the
group-specific results average the ATT of each group. (t < 0)
Represent average anticipation of the treatment and (t ≥ 0)
and G. Average are the ATT of start of the mine depending
of the specification. (t = n) represents the ATT of n years
since/before the event (being 0 the year of the start of the
mine).g = k represents the ATT across time of the group of
municipalities that received the treatment in the year k. *
p < 0.10, ** p < 0.05, *** p < 0.01. WildBootstrap (WB)
standard errors in parentheses.
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Table A3: Dynamic effects of mining on Education and Economic Inequalities

(Event Study) (Group-Specific Effect)
Enrollrate Esco Gini Theil Enrollrate Esco Gini Theil

Average -0.0329* 0.00894 -0.0551*** -0.206*** G. Average -0.00125 -0.0595 -0.0105 0.109*
(t < 0) (0.0193) (0.0986) (0.0141) (0.0786) (0.0153) (0.0851) (0.00971) (0.0617)

Average -0.0177 -0.0461 -0.0188 0.101 g = 2000 -0.0439 0.0132 -0.0238 0.0828
(t ≥ 0) (0.0207) (0.125) (0.0150) (0.0962) (0.0346) (0.217) (0.0255) (0.163)

t = −20 -0.0195 0.0225 -0.0740*** -0.293* g = 2010 0.00750 -0.0778 -0.0127 0.150**
(0.0386) (0.214) (0.0206) (0.172) (0.0223) (0.125) (0.00982) (0.0755)

t = −10 -0.0463** -0.00457 -0.0361*** -0.119 g = 2020 0.0255 -0.100 0.00503 0.0743
(0.0229) (0.107) (0.0115) (0.0829) (0.0180) (0.106) (0.0113) (0.0618)

t = 0 0.00777 0.00729 -0.00955 0.105
(0.0177) (0.0903) (0.0117) (0.0716)

t = 10 -0.0313 -0.124 -0.0154 0.137*
(0.0214) (0.113) (0.0114) (0.0772)

t = 20 -0.0294 -0.0220 -0.0314 0.0604
(0.0357) (0.234) (0.0263) (0.148)

N 9522 9522 9519 9519 9522 9522 9519 9519

Note: the table shows staggered DID estimations.The dependent variable ’Enrollrate’ represents the secondary school enrollment rate, while
’Esco’ denotes average years of schooling. ’Gini’ and ’Theil’ correspond to respective economic inequality indexes. The table displays the
Average Treatment Effect on the Treated (ATT) for each specification. Event study results show the overall ATT across all groups overtime,
while the group-specific results average the ATT of each group. (t < 0) Represent average anticipation of the treatment and (t ≥ 0) and G.
Average are the ATT of start of the mine depending of the specification. (t = n) represents the ATT of n years since/before the event (being
0 the year of the start of the mine).g = k represents the ATT across time of the group of municipalities that received the treatment in the year
k. WildBootstrap (WB) standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table A4: Robustness Test: Treatment Groups by Distance on Income

(Event Study) (Group-Specific Effect)

5 km 0.175*** 0.145***
(0.0163) (0.00919)

10 km 0.0174* 0.0444***
(0.00910) (0.00619)

15 km 0.0199** 0.0511***
(0.00882) (0.00552)

25 km 0.0533*** 0.0532***
(0.00771) (0.00464)

50 km 0.0815*** 0.0750***
(0.00773) (0.00459)

75 km 0.0825*** 0.110***
(0.00534) (0.00372)

Note: the table shows staggered DID estimations. The de-
pendent variable is logarithm of income of the households.
Average treatment effect on the treated (ATT) of start of a
mine for each specification. Event study results show the over-
all ATT across all groups overtime, while the group-specific
results average the ATT of each group. First column refers
to the criteria to choose treated municipalities based on dis-
tance to the mine. * p < 0.10, ** p < 0.05, *** p < 0.01. WB
standard errors in parentheses.
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Table A5: Robustness Test: Treatment Groups by Distance on Environment

(Event Study) (Group-Specific Effect)

5 km -248.5** -39.40*
(116.0) (21.17)

10 km -287.8*** -66.12***
(103.8) (19.33)

15 km -111.7 -20.31
(102.9) (16.53)

25 km -186.5** 6.157
(76.04) (14.98)

50 km -109.9 -31.70
(101.7) (21.15)

75 km -38.11 -50.02***
(88.29) (16.89)

Note: the table shows staggered DID estimations. The de-
pendent variable is the NDVI at municipality level. Average
treatment effect on the treated (ATT) of start of a mine for
each specification. Event study results show the overall ATT
across all groups overtime, while the group-specific results
average the ATT of each group. First column refers to the
criteria to choose treated municipalities based on distance to
the mine. * p < 0.10, ** p < 0.05, *** p < 0.01. WB stan-
dard errors in parentheses.
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Table A6: Robustness Test: Treatment based on Discovery date for Income

(Event Study) (Group-Specific Effect)

Average -0.0467 G. Average 0.0315***
(t < 0) (0.0332) (0.0116)

Average 0.0152 g = 2000 -0.0474**
(t ≥ 0) (0.0140) (0.0237)

t = −20 -0.0722 g = 2010 0.105***
(0.0653) (0.0151)

t = −10 -0.0211 g = 2020 -0.0851***
(0.0207) (0.0227)

t = 0 -0.00325
(0.0121)

t = 10 0.0731***
(0.0125)

t = 20 -0.0243
(0.0276)

N 8175666 N 8175666

Note: the table shows staggered DID estimations. The de-
pendent variable for consumption is logarithm of income of
the households. Average treatment effect on the treated
(ATT) of discovery of a deposit for each specification. Event
study results show the overall ATT across all groups over-
time, while the group-specific results average the ATT of
each group. (t < 0) Represent average anticipation of the
treatment and (t ≥ 0) and G. Average are the ATT of dis-
covery of a deposit depending of the specification. (t = n)
represents the ATT of n years since/before the event (being
0 the year of the start of the mine).g = k represents the
ATT across time of the group of municipalities that received
the treatment in the year k. * p < 0.10, ** p < 0.05, ***
p < 0.01. WildBootstrap (WB) standard errors in parenthe-
ses.
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Table A7: Robustness Test: Treatment based on Discovery date for Environ-
ment

(Event Study) (Group-Specific Effect)

Average 47.69 G. Average -147.0***
(t < 0) (38.07) (52.76)

Average -219.4* g = 2002 -413.9***
(t ≥ 0) (132.7) (63.09)

t = 0 -88.96 g = 2003 -1482.2***
(87.78) (13.93)

t =6 -178.6* g = 2004 -5.229
(95.42) (13.08)

t =7 -254.7** g = 2006 -154.5***
(100.4) (12.43)

t =8 -160.9** g = 2008 133.1***
(68.55) (6.102)

t =11 -195.9** g = 2011 -208.8***
(95.78) (59.00)

t =17 -725.5*** g = 2016 -16.49
(198.7) (14.91)

t =18 -458.3***
(67.05)

N 50316 50316

Note: the table shows staggered DID estimations. Com-
plete table of results in online appendix. The dependent
variable for environment is the NDVI at municipality level.
Average treatment effect on the treated (ATT) of discovery
of a deposit for each specification. Event study results show
the overall ATT across all groups overtime, while the group-
specific results average the ATT of each group. (t < 0) Rep-
resent average anticipation of the treatment and (t ≥ 0) and
G. Average are the ATT of discovery of a deposit depending
of the specification. (t = n) represents the ATT of n years
since/before the event (being 0 the year of the start of the
mine).g = k represents the ATT across time of the group of
municipalities that received the treatment in the year k. *
p < 0.10, ** p < 0.05, *** p < 0.01. WildBootstrap (WB)
standard errors in parentheses.
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Table A8: Robustness Test: Treatment based on Discovery date for Environ-
ment

NDVI Income

Average -130.7 Average 0.2599*
(t ≥ 0) (133.5) (t ≥ 0) (0.1426)

t = 0 -30.1 t = 0 0.1972*
(126.5) (0.1056)

t =13 -341.4* t =1 0.3546
(203.2) (0.2175)

t =17 -2085.9*** t =2 0.0911
(27.7) (0.1533)

t =18 -1612.2*** t = −1 -0.1883***
(27.6) (0.0642)

Note: the table shows staggered DID estimations. Com-
plete table of results in online appendix. The dependent
variable for consumption is logarithm of income of the
households and in the case of environment the NDVI
at municipality level. Average treatment effect on the
treated (ATT) of start of a mine. t ≥ 0) is the ATT of
start of a mine. (t = n) represents the ATT of n years
since/before the event (being 0 the year of the year of
start of operation of a mine).WildBootstrap (WB) stan-
dard errors in parentheses. * p < 0.10, ** p < 0.05, ***
p < 0.01
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Table A9: Robustness Test: Effect of mining on bodies of water

(Event Study) (Group-Specific Effect)

Arsenic 0.00320*** 0.00413***
(0.000605) (0.000406)

Mercury 0.000187*** 0.000150***
(0.0000538) (0.0000184)

Chromium 0.00661** 0.00171
(0.00325) (0.00442)

Note: the table shows staggered DID estimations. The dependent
variable measures of concentration of heavy metals in bodies of
water. Average treatment effect on the treated (ATT) of start of
a mine for each specification. Event study results show the overall
ATT across all groups overtime, while the group-specific results
average the ATT of each group. All measures of heavy metals are
coded in mg/L. WB standard errors in parentheses. * p < 0.10, **
p < 0.05, *** p < 0.01
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Table A10: Robustness Test: Effect of mining on CO2 emissions

Event Study Group Specific

Average 0.00801 G. Average -0.0422
(t < 0) (0.00864) (0.0486)

Average -0.0209 g = 2004 0.133***
(t ≥ 0) (0.0834) (0.0160)

t = 0 0.0321** g = 2010 0.251***
(0.0147) (0.0422)

t =15 0.137* g = 2013 0.103***
(0.0775) (0.0303)

t =18 0.530*** g = 2020 -0.0549***
(0.134) (0.00965)

N 51177 51177

Note: the table shows staggered DID estimations. The
dependent variable is average CO2 emissions at municipal-
ity level. Average treatment effect on the treated (ATT)
of start of a mine for each specification. Event study re-
sults show the overall ATT across all groups overtime, while
the group-specific results average the ATT of each group.
(t < 0) Represent average anticipation of the treatment and
(t ≥ 0) and G. Average are the ATT of start of the mine
depending of the specification. (t = n) represents the ATT
of n years since/before the event (being 0 the year of the
start of the mine).g = k represents the ATT across time of
the group of municipalities that received the treatment in
the year k. * p < 0.10, ** p < 0.05, *** p < 0.01. Wild-
Bootstrap (WB) standard errors in parentheses.
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Table A11: Discussion: Treatment based on characteristics of the mine

Income NDVI

(Event Study) (Group-Specific) (Event Study) (Group-Specific)

By Size

Giant 0.296*** 0.293*** 170.4*** 144.2***
(0.0451) (0.0424) (13.60) (3.316)

Major 0.236*** 0.232*** -498.9*** -128.3***
(0.0469) (0.0225) (216.1) (22.16)

Moderate -0.000 -0.006 -100.0 -23.16
(0.0528) (0.020) (0.0451) (47.01)

By Type

Precious 0.218*** 0.213*** -378.9 -50.05*
(0.0311) (0.0177) (246.2) (27.26)

ETM 0.021 -0.045 -168.7* -92.12
(0.0738) (0.0316) (101.4) (57.90)

Note: the table shows staggered DID estimations. The dependent variable is logarithm of income of
the households in the case of Income and in the case of environment the NDVI at municipality level.
Average treatment effect on the treated (ATT) of start of a mine for each specification. Event study
results show the overall ATT across all groups overtime, while the group-specific results average the
ATT of each group. First column refers to the criteria to choose treated municipalities based on the
characteristics of the mine, treated municipalities that do not meet the criteria are excluded from
the sample. * p < 0.10, ** p < 0.05, *** p < 0.01. WB standard errors in parentheses.
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Table A12: Discussion: Treatment based on income distribution of the popula-
tion

(Event Study) (Group-Specific Effect)

Bottom 20% 0.565*** 0.511***
(0.185) (0.0897)

20% - 40% 0.218*** 0.148***
(0.034) (0.0191)

40% - 60% 0.356 0.229***
(0.0088) (0.017)

60% - 80% 0.235*** 0.208***
(0.013) (0.011)

Top 20% 0.0514 0.0686***
(0.042) (0.0263)

Note: the table shows staggered DID estimations. The dependent
variable is logarithm of income of the households. Average treatment
effect on the treated (ATT) of start of a mine for each specification.
Event study results show the overall ATT across all groups overtime,
while the group-specific results average the ATT of each group. First
column refers to the quantile of the population used. * p < 0.10, **
p < 0.05, *** p < 0.01. WB standard errors in parentheses.
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O1 Online Appendix

Table O1: Dynamic effects of mining on NDVI

(Event Study) (Group-Specific Effect)

Average 78.84*** G. Average -59.96***
(t < 0) (20.51) (22.69)

Average -377.3** g =2002 -2092.9***
(t ≥ 0) (181.9) (26.74)

t = −21 571.5*** g =2004 42.05***
(26.16) (6.115)

t = −20 220.6*** g =2005 384.9***
(12.17) (5.548)

t = −19 177.8 g = 2006 -284.4***
(482.7) (94.96)

t = −18 -113.1 g = 2007 53.15
(347.6) (43.89)

t = −17 120.1 g = 2008 64.21
(241.5) (51.07)

t = −16 -55.63 g = 2009 -261.2***
(362.8) (19.36)

t = −15 140.0 g = 2010 -54.60***
(276.0) (5.234)

t = −14 -6.584 g = 2011 -49.15***
(204.1) (13.35)

t = −13 458.1** g = 2013 197.6**
(219.2) (81.17)

t = −12 -51.24 g = 2014 169.9***
(288.6) (11.50)

t = −11 -68.34 g = 2018 19.59***
(161.2) (5.587)

t = −10 257.2 g = 2019 -193.7***
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(Event Study) (Group-Specific Effect)

(169.5) (6.330)

t = −9 -210.6 g = 2020 181.4***
(166.6) (6.477)

t = −8 -44.62
(109.6)

t = −7 20.97
(112.1)

t = −6 69.24
(61.02)

t = −5 8.615
(67.88)

t = −4 20.76
(83.39)

t = −3 26.60
(81.21)

t = −2 -66.35
(68.82)

t = −1 180.4**
(89.20)

t = 0 -30.45
(97.02)

t =1 -58.71
(95.05)

t =2 33.78
(88.36)

t =3 -53.42
(84.30)

t =4 -68.06
(111.0)

t =5 -97.20
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(Event Study) (Group-Specific Effect)

(84.16)

t =6 -110.3
(80.46)

t =7 -148.7
(99.28)

t =8 -227.3*
(125.1)

t =9 -132.8
(129.3)

t = 10 -198.8
(151.1)

t =11 -183.8
(146.2)

t =12 -164.2
(177.1)

t =13 -341.4*
(187.8)

t =14 -345.0
(284.3)

t =15 -442.3
(629.8)

t =16 -901.0***
(32.09)

t =17 -2086.4***
(28.65)

t =18 -1612.2***
(29.89)

N 51282 N 51282

Note: the table shows staggered DID estimations.
The dependent variable for environment is the NDVI
at municipality level. Average treatment effect on
the treated (ATT) of start of a mine for each
specification. Event study results show the overall
ATT across all groups overtime, while the
group-specific results average the ATT of each group.
(t < 0) Represent average anticipation of the
treatment and (t ≥ 0) and G. Average are the ATT
of start of the mine depending of the specification.
(t = n) represents the ATT of n years since/before
the event (being 0 the year of the start of the
mine).g = k represents the ATT across time of the
group of municipalities that received the treatment in
the year k. * p < 0.10, ** p < 0.05, *** p < 0.01.
WildBootstrap (WB) standard errors in parentheses.
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Table O2: Robustness Test: Treatment based on Discovery date for Environ-
ment

(Event Study) (Group-Specific Effect)

Average 47.69 G. Average -147.0***
(t < 0) (38.07) (52.76)

Average -219.4* g = 2002 -413.9***
(t ≥ 0) (132.7) (63.09)

t = −5 -106.9 G2003 -1482.2***
(119.8) (13.93)

t = −4 218.3** g = 2004 -5.229
(91.74) (13.08)

t = −3 -121.8 g = 2005 6.809
(96.86) (61.63)

t = −2 40.33 g = 2006 -154.5***
(120.0) (12.43)

t = −1 103.9 g = 2007 -47.23
(99.07) (33.53)

t = 0 -88.96 g = 2008 133.1***
(87.78) (6.102)

t =1 -54.87 g = 2009 -201.5**
(100.9) (82.03)

t =2 -229.1*** g = 2010 -62.35
(86.15) (74.09)

t =3 -96.17 g = 2011 -208.8***
(82.26) (59.00)

t =4 -129.2 g = 2016 -16.49
(100.3) (14.91)

t =5 -128.6
(86.25)

t =6 -178.6*
(95.42)
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(Event Study) (Group-Specific Effect)

t =7 -254.7**
(100.4)

t =8 -160.9**
(68.55)

t =9 -141.0
(98.46)

t = 10 -134.5
(99.66)

t =11 -195.9**
(95.78)

t =12 -204.8
(150.4)

t =13 -199.8
(136.7)

t =14 -199.3*
(120.4)

t =15 -253.0
(161.5)

t =16 -335.5
(470.8)

t =17 -725.5***
(198.7)

t =18 -458.3***
(67.05)

N 50316

Note: the table shows staggered DID estimations.
The dependent variable for environment is the NDVI
at municipality level. Average treatment effect on
the treated (ATT) of discovery of a deposit for each
specification. Event study results show the overall
ATT across all groups overtime, while the
group-specific results average the ATT of each group.
(t < 0) Represent average anticipation of the
treatment and (t ≥ 0) and G. Average are the ATT of
discovery of a deposit depending of the specification.
(t = n) represents the ATT of n years since/before
the event (being 0 the year of the start of the
mine).g = k represents the ATT across time of the
group of municipalities that received the treatment in
the year k. * p < 0.10, ** p < 0.05, *** p < 0.01.
WildBootstrap (WB) standard errors in parentheses.
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Table O3: Robustness Test: ? estimator

(NDVI) (Income)

Average -130.7 Average 0.2599*
(t ≥ 0) (133.5) (t ≥ 0) (0.1426)

t = 0 -30.1 t = 0 0.1972*
(126.5) (0.1056)

t =1 -58.6 t =1 0.3546
(123.8) (0.2175)

t =2 33.9 t =2 0.0911
(99.8) (0.1533)

t =3 -53.2 t = −1 -0.1883***
(100.3) (0.0642)

t =4 -67.6
(124.2)

t =5 -96.6
(105.8)

t =6 -109.9
(98.9)

t =7 -148.2
(117.8)

t =8 -226.7
(149.3)

t =9 -132.4
(149.2)

t = 10 -198.3
(175.6)

t =11 -183.5
(169.4)

t =12 -164.0
(184.2)

t =13 -341.4*
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(NDVI) (Income)

(203.2)

t =14 -344.4
(203.2)

t =15 -442.3
(900.7)

t =16 -900.6
(1016.6)

t =17 -2085.9***
(27.7)

t =18 -1612.2***
(27.6)

t = −1 -172.8
(110.2)

t = −2 4.9
(55.9)

t = −3 5.4
(82.2)

t = −4 -22.1
(84.8)

t = −5 -33.3
(104.4)

Note: the table shows staggered DID estimations. The
dependent variable for consumption is logarithm of
income of the households and in the case of environment
the NDVI at municipality level. Average treatment effect
on the treated (ATT) of start of a mine. t ≥ 0) is the
ATT of start of a mine. (t = n) represents the ATT of n
years since/before the event (being 0 the year of the year
of start of operation of a mine).WildBootstrap (WB)
standard errors in parentheses. * p < 0.10, ** p < 0.05,
*** p < 0.01
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